

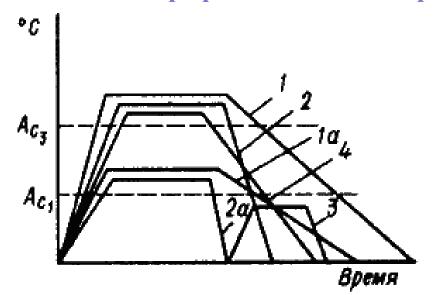
Лекция 11

Тема Лекции: Виды термической обработки металлов. Основы теории термической обработки стали.

к.ф.-м.н., PhD, ассоциированный профессор Тулегенова Auда Тулегенкызы

Цель лекции:

Ознакомление с основными видами термической обработки металлов, раскрыть физическую сущность процессов, происходящих при нагреве и охлаждении сталей, и показать влияние термической обработки на структуру и эксплуатационные свойства материалов.


- Основные вопросы:
 1. Виды термической обработки металлов.
 2. Превращения, протекающие в структуре, стали при нагреве и охлаждении Механизм основных превращений
 4. Превращение перлита в аустенит
 5. Превращение аустенит

Виды термической обработки металлов

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура — время)

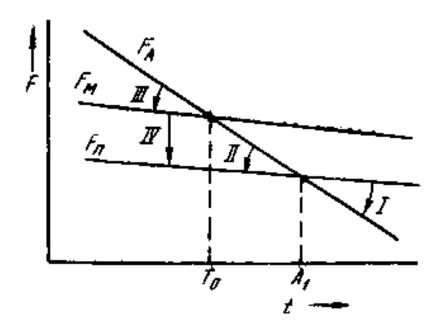
Графики различных видов термообработки:

отжига (1, 1a), закалки (2, 2a), отпуска (3), нормализации (4) Различают следующие виды термической обработки:

1. Отжиг 1 рода – возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.


Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

- •диффузионный;
- •рекристаллизационный;
- отжиг для снятия напряжения после ковки, сварки, литья.
- 2. *Отожиг II рода* отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Превращения, протекающие в структуре стали при нагреве и охлаждении

Зависимость свободной энергии структурных составляющих сталей от температуры:

аустенита (F_A) , мартенсита (F_M) , перлита (F_Π)

Механизм основных превращений

Превращение основано на диффузии углерода, сопровождается полиморфным превращением, а так же растворением цементита в аустените.

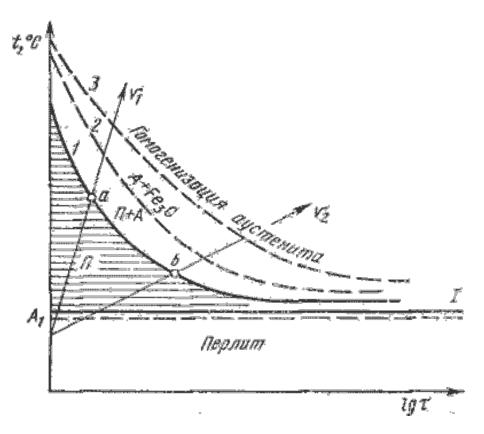
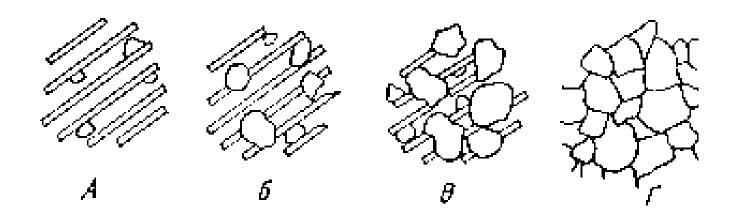



Диаграмма изотермического образования аустенита: 1 - начало образования

- 1 начало образования аустенита;
- 2 конец преобразования перлита в аустенит;
- 3 полное растворение цементита

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.

Механизм превращения перлита в аустенит

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка Fe_{α} перестраивается в решетку Fe_{ν} .

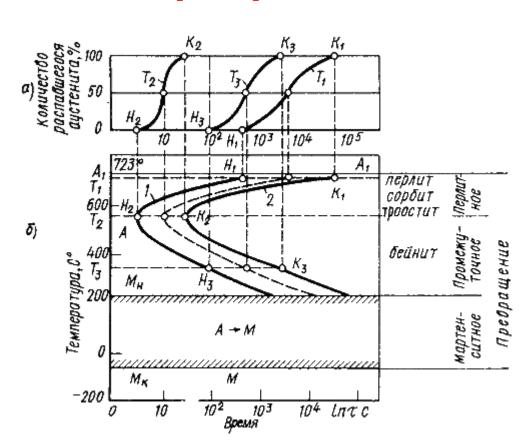
Рост зерна аустенита

Образующиеся зерна аустенита получаются мелкими (начальное зерно).

При повышении температуры или выдержке происходит рост зерна аустенита.

Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. *Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры , то сталь наследственно крупнозернистая.*


Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.

Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.

Закономерности превращения

Образцы нагревают Д0 которой температуры, при структура состоит из однородного Затем аустенита переносят В термостаты заданной температурой (интервал $25 - 50^{\circ}$ C). Превращение аустенита легко обнаружить онжом наблюдений помощью **3a** изменением магнитных характеристик, так как аустенит парамагнитен, феррит a И цементит обладают магнитными свойствами.

Получают серию кинетических кривых, которые показывают количество образовавшегося перлита в зависимости от времени, прошедшего с начала превращения.

Вопросы для контроля изучаемого материала:

- 1. Что представляет собой термическая обработка металлов и для чего она применяется?
- 2. Назовите основные виды термической обработки и их назначение.
- 3.В чём заключается физическая сущность процесса закалки и отпуска стали?
- 4. Какие структуры могут образоваться при различных скоростях охлаждения аустенита?
- 5. Что такое критические точки А1, А3 и А ст, и какова их роль?
- 6. Как изменяются свойства стали после отжига и закалки?

- **Список литературных источников:** 1. Новиков И. И. Материаловедение. М.: Металлургия, 2019.
- 2. Callister W. D., Rethwisch D. G. Materials Science and Engineering: An Introduction. — Wiley, 2022.
- 3. Cullity, B. D., Graham, C. D. Introduction to Magnetic Materials. Wiley-IEEE Press, 2011.
- 4. Kittel, C. Introduction to Solid State Physics. Wiley, 2018.
- 5. Coey, J. M. D. Magnetism and Magnetic Materials. Cambridge University Press, 2010.